References

Boer, J. L. de & Duisenberg, A. J. M. (1984). Acta Cryst. A40, C-410.Bouwstra, J. A., Schouten, A. & Kroon, J. (1984). Acta Cryst. C40, 428–431.

Crenshaw, M. D. & Zimmer, H. (1983). J. Org. Chem. 48, 2782-2784.

- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1988). Enraf-Nonius SDP-Plus Structure Determination Package. Version 4.0. Enraf-Nonius, Delft, The Netherlands.
- Hoekstra, A., Meertens, P. & Vos, A. (1975). Acta Cryst. B31, 2813-2817.
- Jellinck, P. H. & Garland, M. (1963). J. Endocrinol. 40, 131-132.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kaftori, K., Apeloig, Y. & Rappoport, Z. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 29-37.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Murphy, L. C. & Sutherland, R. L. (1981). Biochem. Biophys. Res. Commun. 100, 1353-1360.
- Schmidt, R. E., Birkhahn, M., Massa, W., Kiprof, P. & Herdtweck, E. (1987). STRUXIII. Ein Programmsystem zur Verarbeitung von Röntgendaten. Univ. of Marburg, and Technischen Univ. München, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Watts, C. K. W., Murphy L. C. & Sutherland, R. L. (1984). J. Biol. Chem. 259, 4223-4229.
- Ziche, W., Auner, N. & Behm, J. (1992). Organometallics, 11, 2494-2499.

Acta Cryst. (1994). C50, 83-85

Structure of Isopropylidene Sedoheptulosan

JÜRGEN KOPF AND DIRK ABELN

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

PETER KÖLL

Fachbereich Chemie, Organische Chemie, Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany

(Received 24 March 1993; accepted 7 July 1993)

Abstract

The title compound, 2,7-anhydro-4,5-*O*-isopropylidene- β -D-*altro*-2-heptulopyranose, C₁₀H₁₆O₆, has a pyranoid conformation which is a distorted *E*₀ conformation with *Q* = 0.609 (1) Å, θ = 147.4 (1)° and Φ = 188.1 (3)° [Cremer & Pople (1975). *J. Am. Chem. Soc.* **97**, 1354–1358].

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved The structure is stabilized by hydrogen bonds. The absolute structure, determined through the Flack parameter, x = -0.08 (14) [Flack (1983). *Acta Cryst.* A**39**, 876-881], corresponds to the known chirality of the title compound (Friedel opposites collected and not merged).

Comment

The title compound was synthesized according to known procedures (Haskins, Hann & Hudson, 1952) and crystals melting at 500 K were obtained from methanol by slow evaporation. The positions of all H atoms were refined with no distance restraints. Both hydroxyl groups O1—H10 and O3—H20 form intermolecular hydrogen bonds. Details of the hydrogen-bonding scheme are given in Table 3. Of the above hydrogen bonds, the latter results in an infinite one-dimensional chain along [0 0 1]. Other distances and angles are generally as expected.

It should be mentioned that this structure is of the 1,6anhydro- β -D-glycopyranose type and therefore the puckering parameters, Q = 0.609 (1) Å, $\theta = 147.4 (1)^{\circ}$ and $\Phi = 188.1 (3)^{\circ}$ (Cremer & Pople, 1975), can be compared with these compounds. A similar conformation of the pyranoid ring, as found in the title compound, is reported for 1,6-anhydro-3,4-*O*-isopropylidene- β -Dtalopyranose (Panagiotopoulos, 1974) and 1,6-anhydro-3,4-*O*-isopropylidene- β -D-galactopyranose (Cano, Foces-Foces, Jimenez-Barbero & Martin-Lomas, 1984), and some selected benzylidene derivatives (Cano, Foces-Foces, Jimenez-Barbero, Bernabe & Martin-Lomas, 1986).

The conformation of the 2,7-anhydro five-membered ring is Q = 0.396 (1) Å and $\Phi = 263.3$ (2)°. For the other

Fig. 1. SCHAKAL88 drawing (Keller, 1986) of the molecular conformation and atomic numbering scheme.

83

five-membered 4,5-O-isopropylidene ring the conformation is Q = 0.301(2) Å and $\Phi = 255.0(3)^{\circ}$ (Cremer & Pople, 1975). The program used to calculate these speci 19

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

. - -

cial details of molecular geometry was PLATONO2 (Snek			$U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$					
1000)	netry was I LATON92 (Spek,		x		у	z	$U_{\rm eq}$	
1990).		01	1.0378 (1) 0.3	011 (1)	-0.2780 (2) 0.044 (1)	
		02	1.0716 (1) 0.2	830(1)	0.1240 (2) 0.036 (1)	
		03	0.9278 (1) 0.0	997(1) 420(1)	0.1/40 ($\begin{array}{ccc} 1) & 0.035(1) \\ 2) & 0.052(1) \end{array}$	
Experimental		04	0.7747 (1) 0.2	429 (1) 196 (1)	0.4333 (2) 0.032(1) 2) 0.043(1)	
Crystal data		06 C1	0.9270 (1) 0.3	833 (1)	0.0329 ($\begin{array}{c} 1) \\ 2) \\ 0.034 (1) \\ 0.039 (1) \\ 0.039 (1) \\ \end{array}$	
C10H16O6	Cu $K\alpha$ radiation	C2	0.9675 (1) 0.2	765 (1)	0.0379 (2) 0.033(1) 2) 0.031(1)	
M = 232.23	$\lambda = 1.54178 \text{ Å}$	C3	0.8918 (1) 0.2	087 (1)	0.1617 (2) 0.030 (1)	
Tetragonal	Cell parameters from 25	C4	0.8802 (1) 0.2	586 (1)	0.3571 (2) 0.035 (1)	
	reflections	C5	0.8927 (1) 0.3	817(1)	0.3669 (2) 0.035 (1)	
F + 3	$A = 20.76 + 52.18^{\circ}$	C6	0.961/(1) 0.4	266 (1)	0.2103 ($\begin{array}{c} 2) & 0.035(1) \\ 2) & 0.042(1) \end{array}$	
a = 12.400 (1) A	$\theta = 39.70 - 32.18$	C8	0.7153 (1) 0.3	428 (1)	0.2243 ((1) (1)	
c = 7.102 (1) A	$\mu = 1.001 \text{ mm}^{-1}$	C81	0.6890 (2) 0.3	709 (2)	0.6345 (3) 0.070 (2)	
V = 1092.0 (2) A ³	I = 293 (2) K	C82	0.6162 (2) 0.3	321 (2)	0.3093 (5) 0.072 (1)	
<i>Z</i> = 4	Transparent blocks							
$D_x = 1.413 \text{ Mg m}^{-3}$	$0.8 \times 0.4 \times 0.4$ mm							
	Colourless	Table 2. <i>Geometric parameters</i> (Å, °)						
		01–C1		1.409 (2)	O6-	-C6	1.435 (2)	
–		O2C2		1.431 (2)	C1~	-C2	1.514 (2)	
Data collection		02–C7		1.438 (2)	C2-	C3	1.536 (2)	
Enraf-Nonius CAD-4 four-	$R_{\rm int} = 0.0254$	03 - C3		1.426 (2)	C3-	-C4	1.527 (2)	
circle diffractometer	$\theta_{\rm max} = 76.5^{\circ}$	04-04		1.441 (2)	C5-	-C6	1.535 (2)	
$2\theta/\omega$ scans	$h = 0 \rightarrow 15$	O5-C8		1.415 (2)	C6-	-C7	1.522 (2)	
Absorption correction:	$k = 0 \rightarrow 15$	O5-C5		1.423 (2)	C8-	-C82	1.514 (3)	
none	$l = 0 \rightarrow 8$	O6—C2		1.416 (2)	C8-	-C81	1.512 (3)	
5079 measured reflections	3 standard reflections	C2-02-	C7	107.4 (1)	04-	-C4-C5	102.2 (1)	
2268 independent reflections	frequency: 120 min	C4-04-	C8	110.4 (1)	C3-	-C4-C5	115.8 (1)	
(Friedel pairs not merged)	intensity variation: 1%	$C_{2} = 06 =$	C5 C6	102.8 (1)	05-	$-C_{5}$	10.2 (1)	
2116 observed reflections		01-C1-	C0 C2	112.2 (1)	C6-	-C5-C4	113.0(1)	
2110 observed reflections		06-C2-	02	106.1 (1)	06-	-C6-C5	109.7 (1)	
$[I > 2\sigma(I)]$		06C2C1 02C2C1 06C2C3 02C2C3		109.9 (1)	O6-	-C6-C7	101.9 (1)	
				110.2 (1)	C5-	-C6-C7	110.6 (1)	
				108.1(1)	02-	-C7 - C6	103.4 (1)	
Refinement		02 - 02 - 02 - 02 - 02 - 02 - 02 - 02 -	C3	1126(1)	05-		108.2 (2)	
Refinement on F^2	Extinction correction:	03-C3-	C4	110.8 (1)	04-	-C8-C82	110.1 (2)	
$P[F^2 > 2\pi(F^2)] = 0.0277$	$E^* = kE [1 \pm 0.001E^2$	O3-C3-	C2	111.4 (1)	05-	-C8-C81	111.9 (2)	
R[P > 20(P)] = 0.0277 $wP(P^2) = 0.0711$	$\Gamma_c = \kappa \Gamma_c [1 + 0.001\Gamma_c]$	C4-C3-	C2	110.8 (1)	04-	-C8-C81	107.7 (2)	
WR(F) = 0.0711	Extinction coofficients	04	C3	112.1 (1)	C82	-C8-C81	113.2 (2)	
S = 1.010		06 - C2 - C3 - C4		-55.7 (1) C4-	-C5-C6-O	6 48.5 (2	
2208 reflections		$C_2 - C_3 - C_4 - C_5$		29.2 (2) (5-	C3-C5-C5-C2 -		
210 parameters	Atomic scattering factors	03-04-	0-00	-20.3 (2) 00-	-00020	3 /8.0(1	
Calculated weights	from International Tables							
$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2]$	for Crystallography (1992,	-		· ,	, ,.		(Å 0)	
+ 0.0480 <i>P</i>]	Vol. C, Tables 4.2.6.8,	lable 3. Hydrogen-bonding geometry (A, °)						
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)	D	н	A L)—Н I	H···A D	$\cdots A D = H \cdots A$	
$(\Delta/\sigma)_{\rm max} = -0.510$	Absolute configuration:	01	H10 0	04 ⁱ 0.	93 (2)	1.80 (2) 2.7	25 (2) 169 (2)	
$\Delta \rho_{\rm max} = 0.187 \ {\rm e} \ {\rm \AA}^{-3}$	Flack (1983); $x =$	03	H20 0	03 ¹¹ 0.	90 (2)	1.92 (3) 2.7	95 (1) 164 (2)	
$\Delta \rho_{\rm min} = -0.137 \ {\rm e} \ {\rm \AA}^{-3}$	-0.08 (14)	Symmetry codes: (i) $1 + y$, $1 - x$, $z - \frac{3}{4}$; (ii) $1 + y$, $1 - x$, $z + \frac{1}{4}$.						

Friedel opposites were collected for the range: h = -15-0, k =-15-0 and l = -8-0. These Friedel pairs were regarded as symmetry independent and were not merged. Data collection: Enraf-Nonius CAD-4 software. Cell refinement: Enraf-Nonius CAD-4 software. Data reduction: CADSHEL (Kopf, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL92 (Sheldrick, 1993). Molecular graphics: SCHAKAL88 (Keller, 1986). Software used to prepare material for publication: CIF2TEX (Kopf, 1992); FCF2FOC (Kopf, 1992).

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71477 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SE1033]

References

- Cano, F. H., Foces-Foces, C., Jimenez-Barbero, J., Bernabe, M. & Martin-Lomas, M. (1986). *Carbohydr. Res.* 155, 1-10.
- Cano, F. H., Foces-Foces, C., Jimenez-Barbero, J. & Martin-Lomas, M. (1984). Carbohydr. Res. 127, 338-344.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Haskins, W. T., Hann, R. M. & Hudson, C. S. (1952). J. Am. Chem. Soc. 74, 2198-2200.
- Keller, E. (1986). Chem. Unserer Zeit, 20, 178-181.
- Kopf, J. (1987). CADSHEL. Program for Data Reduction of Enraf-Nonius CAD-4 Data. Univ. of Hamburg, Germany.
- Kopf, J. (1992). CIF2TEX. Program for Automatic Preparation of Deposition Data. Univ. of Hamburg, Germany.
- Kopf, J. (1992). FCF2FOC. Program for Printing F_c^2 and F_o^2 . Univ. of Hamburg, Germany.
- Panagiotopoulos, N. C. (1974). Acta Cryst. B30, 1402-1407.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). J. Appl. Cryst. In preparation.
- Spek, A. L. (1990). Acta Cryst. A46, C-31.

Acta Cryst. (1994). C50, 85-86

Structures of the Diels–Alder Reaction Products of Thymoquinone and 1-Vinylcyclohexene. II. 7-Isopropyl-4-methyltricyclo[$8.4.0.0^{2,7}$]tetradeca-4,9-diene-3,6-dione, C₁₈H₂₄O₂

J. IULEK[†] AND J. ZUKERMAN-SCHPECTOR[‡]

Instituto de Física e Química de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos SP, Brazil

T. J. BROCKSOM AND F. SILVA JR

Universidade Federal de São Carlos, Departamento de Química, Caixa Postal 676, 13565-905 São Carlos SP, Brazil

(Received 6 January 1993; accepted 14 May 1993)

Abstract

The title molecule has an all-*cis* ring-fusion tricyclic structure, with the angular isopropyl group opposite to the two cyclohexene ring substituents. The cyclohexenedione and the cyclohexene rings are both in a slightly distorted sofa conformation, whereas the cyclohexane ring adopts an almost ideal chair con-

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved formation. The molecule has an overall distorted hemispherical conformation.

Comment

The Diels-Alder reactions of thymoguinone (4) and 1-vinylcyclohexene (3) lead to several different products, depending mainly upon the reaction conditions used; the thermal reaction products have been analyzed in part I (Iulek, Zuckerman-Schpector, Brocksom & Silva, 1993). Lewis acid-catalyzed reaction conditions (AlCl₃ or SnCl₄) produce, in excellent vield, a 1:1 ratio of two principal products. Product (1) has been isolated, purified and crystallized thus allowing the definition of the relative stereochemistry of the three contiguous stereogenic centres by a single-crystal X-ray diffraction study. Compounds (1) and (2) are precursors in the reaction pathway aiming at the synthesis of naturally occurring cembrane diterpenes which possess interesting biological activities (Tius, 1988); therefore, the knowledge of the molecular conformation helps in the prediction of the steric course of subsequent reactions.

The cyclohexenedione ring conformation is close to that of a sofa with C(7) 0.617 (5) Å out of the plane defined by C(2)–C(6); O(1) is 0.223 (3) Å in the same direction as C(7) and O(2) is 0.239 (5) Å out of the plane in the opposite direction. The cyclohexene ring is in a slightly distorted sofa conformation with C(7) 0.569 (5) Å out of the plane defined by C(2)– C(1)–C(10)–C(9)–C(8). The cyclohexane ring is in an almost ideal chair conformation, with C(1) 0.690 (4) Å above and C(12) 0.646 (6) Å below the plane defined by the other four atoms. The Cremer & Pople (1975) ring-puckering parameters are: cyclohexenedione, $q_2 = 0.362$ (5), $q_3 = -0.274$ (5), Q =

Fig. 1. The molecular structure of (1) with the atom labelling; 50% probability thermal ellipsoids are shown.

[†] Permanent address: Departamento de Química, Universidade Estadual de Ponta Grossa PR, Brazil.

[‡] Present address: Departamento de Química, Universidade Federal de São Carlos, Brazil.